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In this paper, we consider the problem of best approximation in ‘pðnÞ; 14p41: If

hp; 14p41; denotes the best ‘p-approximation of the element h 2 Rn from a proper

affine subspace K of Rn; h =2 K ; then limp!1 hp ¼ hn
1 ; where hn

1 is a best

‘1-approximation of h from K ; the so-called natural ‘1-approximation. Our aim is

to give a complete description of the rate of convergence of hp to hn
1 as p ! 1: # 2002

Elsevier Science (USA)
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1. INTRODUCTION

For x ¼ ðxð1Þ; xð2Þ; . . . ; xðnÞÞ 2 Rn; the ‘p-norms, 14p41; are defined by

jjxjjp ¼
Xn

j¼1

jxð jÞjp
 !1=p

; 14p51;

jjxjj1 ¼ max
14j4n

jxð jÞj:

For convenience we will use jj � jj as the norm jj � jj1:
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Let Ka| be a subset of Rn: For h 2 Rn=K and 14p41 we say that
hp 2 K is a best ‘p-approximation of h from K if

jjhp 	 hjjp4jj f 	 hjjp for all f 2 K :

If K is a closed set of Rn; then the existence of hp is guaranteed. Moreover,
there exists a unique best ‘p-approximation if K is a closed convex set and
15p51: In general, the unicity of the best ‘1-approximation is not
guaranteed. Throughout this paper, K denotes a proper affine subspace of
Rn and we will assume, without loss of generality, that h ¼ 0 and 0 =2 K : In
this context, we gave in [5] a complete description of the rate of convergence
of the P !oolya algorithm as p ! 1: We will apply similar techniques to study
the case p ! 1:

It is known, [2, 3], that if K is an affine subspace of Rn; then limp!1 hp ¼
hn

1 ; where hn
1 is a best ‘1-approximation of 0 from K called the natural best

‘1-approximation. In the literature, the above convergence is called the
P !oolya 1-algorithm. The natural ‘1-approximation satisfies the following
property. If L denotes the set of the best ‘1-approximations of 0 from K then
hn

1 is the unique element of L that minimizes the expression

Xn

j¼1

jh1ð jÞjlnjh1ð jÞj;

for all h1 2 L; where 0 ln 0 :¼ 0:
In [1] it is proved that jjhp 	 hn

1 jj=ðp 	 1Þ is bounded as p ! 1þ: Also in
[1], the authors show that if L is a singleton then jjhp 	 hn

1 jj ¼ Oðg1=ðp	1ÞÞ for
some 04g51: However, the next example shows that this condition is not
necessary to guarantee an exponential rate of convergence.

Example 1.1. Let us consider the affine subspace

K ¼ ð0; 1; 1Þ þ spanfð0; 1;	1Þ; ð2; 1; 0Þg:

If h 2 K; then we can write h ¼ ð2m; 1 þ lþ m; 1 	 lÞ; for some l; m 2 R:
Since, for all m 2 R=f0g;

jjhjj1 ¼ j2mj þ j1 þ lþ mj þ j1 	 lj > j1 þ lj þ j1 	 lj52;

we conclude that the set of best ‘1-approximations of 0 from K is given by

L ¼ fð0; 1 þ l; 1 	 lÞ : jlj41g:

Moreover, the function FðlÞ ¼ ð1 þ lÞ lnð1 þ lÞ þ ð1 	 lÞ lnð1 	 lÞ; with l
2 ½	1; 1�; has a minimum at l ¼ 0 and therefore hn

1 ¼ ð0; 1; 1Þ: On the other
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hand, an easy computation shows that for p > 1;

hp ¼ 	4

1 þ 2ð2p	1Þ=ðp	1Þ; 1 	 1

1 þ 2ð2p	1Þ=ðp	1Þ; 1 	 1

1 þ 2ð2p	1Þ=ðp	1Þ

� �
;

and we immediately deduce that limp!1þ 21=ðp	1Þ jjhp 	 hn
1 jj ¼ 1; and so,

jjhp 	 hn
1 jj ¼ O 1

2

� �1=ðp	1Þ
� 	

:

Our aim is to give a complete description of the rate of convergence of
jjhp 	 hn

1 jj as p ! 1þ: More precisely, we establish necessary and sufficient
conditions on K which guarantee that jjhp 	 hn

1 jj=ðp 	 1Þk ! 0 as p ! 1þ;
for some k 2 N; and conditions on K for hp ¼ hn

1 for all p > 1; and also
conditions for when we obtain an exponential rate of convergence.

2. NOTATION AND PRELIMINARY RESULTS

Let J :¼ f1; 2; . . . ; ng: For x 2 Rn; we define ZðxÞ :¼ fj 2 J : xð jÞ ¼ 0g
and RðxÞ :¼ J =ZðxÞ: Let L be the set of best ‘1-approximations of 0 from K

and let hn
1 be the natural best ‘1-approximation. We write K ¼ hn

1 þV;
where V is a proper linear subspace of Rn: For v 2 V; va0; we consider the
function of the real variable l 2 ½0;þ1Þ defined by

jvðlÞ ¼
X
j2J

jhn

1ð jÞ þ l vð jÞj ln jhn

1ð jÞ þ lvð jÞj:

Observe that jv is a convex function if 04l4minj2Rðhn

1
Þ\RðvÞ jhn

1ð jÞj=jvð jÞj:
Moreover, if Zðhn

1ÞDZðvÞ; then

j0
vð0þÞ ¼

X
Rðhn

1
Þ

vð jÞð1 þ ln jhn

1ð jÞjÞ sgnðhn

1ð jÞÞ; ð1Þ

otherwise j0
vð0þÞ ¼ 	1:

Lemma 2.1. If h1 2 L; then Zðhn
1ÞDZðh1Þ:

Proof. Suppose that there exists an h1 2 L such that h1ð jÞa0 for some
j 2 Zðhn

1Þ: If we take the vector v ¼ h1 	 hn
1a0; then j0

vð0þÞ ¼ 	1 and so
the function jv is strictly decreasing in ½0; l0� for some l0 > 0 sufficiently
small. Then *hh1 ¼ hn

1 þ l0v ¼ ð1 	 l0Þhn
1 þ l0h1 is in L and contradicts the

definition of hn
1 : ]

The following result is known (see for instance [4, 6]).
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Theorem 2.1 (Characterization of Best ‘p-Approximation). hp; 14p5
1; is a best ‘p-approximation of 0 from K if and only if for all v 2 VX

j2J

vð jÞjhpð jÞjp	1 sgnðhpð jÞÞ ¼ 0 if 15p51 ð2Þ

or

X
Rðh1Þ

vð jÞ sgnðh1ð jÞÞ














4

X
Zðh1Þ

jvð jÞj if p ¼ 1: ð3Þ

To simplify the notation, we henceforth set J0 ¼ Zðhn
1Þ and Jc

0 ¼ Rðhn
1Þ:

Let v 2 V; va0: For l > 0 sufficiently small, we have

jjhn

1 þ lvjj1 ¼
X
j2J

jhn

1ð jÞ þ l vð jÞj

¼
X
j2Jc

0

ðhn

1ð jÞ þ lvð jÞÞ sgnðhn

1ð jÞÞ þ l
X
j2J0

jvð jÞj

¼
X
j2Jc

0

jhn

1ð jÞj þ l
X
j2Jc

0

vð jÞ sgnðhn

1ð jÞÞ þ
X
j2J0

jvð jÞj

0
@

1
A

¼ jjhn

1 jj1 þ l
X
j2Jc

0

vð jÞ sgnðhn

1ð jÞÞ þ
X
j2J0

jvð jÞj

0
@

1
A:

From the above equality we immediately obtain the following result.

Lemma 2.2. Let v 2 V; va0: Then *hh ¼ hn
1 þ l v; with l > 0 sufficiently

small, is a best ‘1-approximation of 0 from K if and only if

X
j2Jc

0

vð jÞ sgnðhn

1ð jÞÞ þ
X
j2J0

jvð jÞj ¼ 0:

Corollary 2.1. Let v 2 V; va0: If J0DZðvÞ then

(a)
P

j2Jc
0

vð jÞ sgnðhn
1ð jÞÞ ¼ 0;

(b) hn
1 þ lv 2 L; for l sufficiently small,

(c)
P

j2Jc
0

vð jÞ ln jhn
1ð jÞj sgnðhn

1ð jÞÞ ¼ 0; otherwise,

X
j2Jc

0

vð jÞ sgnðhn

1ð jÞÞ














5
X
j2J0

jvð jÞj: ð4Þ
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Proof. If J0DZðvÞ; then conditions (a) and (b) follow immediately from
(3) and Lemma 2.2. Now from (a) and (1) we have

j0
vð0þÞ ¼

X
j2Jc

0

vð jÞlnjhn

1ð jÞj sgnðhn

1ð jÞÞ: ð5Þ

Since hn
1 þ lv 2 L for l sufficiently small, the definition of hn

1 implies that
j0

vð0þÞ50: Replacing v by 	v in (5) we conclude (c). On the other hand, if
J0 6� ZðvÞ; then the strict inequality in (4) follows from (3) and Lemmas 2.1
and 2.2. ]

Corollary 2.2 (Pinkus [4, p. 135]). hn
1 is the unique best ‘1-approxima-

tion of 0 from K if and only if (4) holds for all v 2 V; va0:

3. RATE OF CONVERGENCE

Let ba0 and fapg be a sequence of real numbers such that ap ! 0 as
p ! 1þ: Applying the Mean Value Theorem to the function f ðtÞ ¼ jbþ tjp	1

it may be shown that

jbþ apjp	1 ¼ jbjp	1 þ ðp 	 1Þ ap Zp; ð6Þ

where limp!1þ Zp ¼ 1=b: Now, applying Taylor’s formula of order r to the
function gðpÞ ¼ jbjp	1 at p ¼ 1; we can write

jbþ apjp	1 ¼
Xr

k¼0

lnk jbj
k!

ðp 	 1Þk þ ðp 	 1ÞapZp þ Oððp 	 1Þrþ1Þ: ð7Þ

Let V0 be the linear subspace of V defined by V0 :¼ fu 2 V : uð jÞ ¼
0; 8j 2 J0g: Note that if J0 ¼ |; then V0 ¼ V:

Lemma 3.1. Suppose that there exists a v 2 V0 and r 2 N such thatX
j2Jc

0

vð jÞ lnkjhn

1ð jÞj sgnðhn

1ð jÞÞ ¼ 0; 04k4r: ð8Þ

Then

lim
p!1þ

1

ðp 	 1Þr

X
j2Jc

0

vð jÞ hpð jÞ 	 hn
1ð jÞ

jhn
1ð jÞj

¼ 	 1

ðr þ 1Þ!
X
j2Jc

0

vð jÞ lnrþ1jhn

1ð jÞj sgnðhn

1ð jÞÞ: ð9Þ
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Proof. Let v 2 V0: From (2) we have, for p close to 1;

X
j2Jc

0

vð jÞjhpð jÞjp	1 sgnðhn

1ð jÞÞ ¼ 0: ð10Þ

Since jjhp 	 hn
1 jj ! 0 as p ! 1þ; applying (7) with r replaced by r þ 1; we get

for every j 2 Jc
0

jhpð jÞjp	1 ¼ jhn

1ð jÞ þ hpð jÞ 	 hn

1ð jÞjp	1

¼
Xrþ1

k¼0

lnkjhn
1ð jÞj

k!
ðp	1Þk þðp	1Þðhpð jÞ	hn

1ð jÞÞZp þOððp	1Þrþ2Þ;

where limp!1þ Zpð jÞ ¼ 1=hn
1ð jÞ: Placing this expression in (10) and taking

into account (8) we obtain

ðp 	 1Þrþ1

ðr þ 1Þ!
X
j2Jc

0

vð jÞ lnrþ1jhn

1ð jÞj sgnðhn

1ð jÞÞ

þ ðp 	 1Þ
X
j2Jc

0

vð jÞðhpð jÞ 	 hn

1ð jÞÞjZpð jÞj þ Oððp 	 1Þrþ2Þ ¼ 0:

Now, dividing by ðp 	 1Þrþ1 and letting p ! 1þ we obtain (9). ]

Observe that, from Corollary 2.1, (8) holds for all v 2 V0 and r ¼ 1: So
we can establish the following result.

Corollary 3.1. For all v 2 V0;

lim
p!1þ

1

p 	 1

X
j2Jc

0

vð jÞ hpð jÞ 	 hn
1ð jÞ

jhn
1ð jÞj ¼ 	1

2

X
j2Jc

0

vð jÞ ln2 jhn

1ð jÞj sgnðhn

1ð jÞÞ:

Now, we can give a very easy proof of the main result in [1].

Theorem 3.1 (Egger and Taylor [1, Theorem 2]). There exists a constant

M > 0 such that jjhp 	 hn
1 jj4Mðp 	 1Þ for all p > 1:

Proof. If the assertion is false, then there exists a sequence fpkgk2N such
that pk # 1 and jjhpk

	 hn
1 jj=ðpk 	 1Þ ! 1 as k ! 1: Thus, we will prove the

theorem by showing that for any sequence pk # 1; lim inf jjhpk
	 hn

1 jj=
ðpk 	 1Þ51: So let pk # 1: If hpk

¼ hn
1 for infinite many k; then the result

follows. Using a subsequence if necessary, we may therefore suppose that
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hpk
ahn

1 for all k and limk!1 uk ¼ u 2 V; with jjujj ¼ 1; where

uk ¼ hpk
	 hn

1

jjhpk
	 hn

1 jj
:

We consider two cases.

(a) If u 2 V0; then, from Corollary 3.1, we have

lim
k!1

1

pk 	 1

X
j2Jc

0

uð jÞ hpk
ð jÞ 	 hn

1ð jÞ
jhn

1ð jÞj ¼ 	1

2

X
j2Jc

0

uð jÞ ln2jhn

1ð jÞj sgnðhn

1ð jÞÞ;

hence

lim
k!1

jjhpk
	 hn

1 jj
pk 	 1

X
j2Jc

0

uð jÞukð jÞ
jhn

1ð jÞj ¼ 	1

2

X
j2Jc

0

uð jÞ ln2jhn

1ð jÞj sgnðhn

1ð jÞÞ

and

lim
k!1

jjhpk
	 hn

1 jj
pk 	 1

¼
j
P

j2Jc
0

uð jÞ ln2jhn
1ð jÞj sgnðhn

1ð jÞÞj
2
P

j2Jc
0
juð jÞj2=jhn

1ð jÞj
:

In particular, we have obtained that jjhpk
	 hn

1 jj=ðpk 	 1Þ is bounded.

(b) If uð jÞa0 for some j 2 J0; then, applying (2), we have, for k large,X
j2Jc

0

uð jÞjhpk
ð jÞjpk	1 sgnðhn

1ð jÞÞ þ
X
j2J0

juð jÞjjhpk
ð jÞjpk	1 ¼ 0; ð11Þ

and so,X
j2Jc

0

uð jÞjhpk
ð jÞjpk	1 sgnðhn

1ð jÞÞ þ jjhpk
	 hn

1 jj
pk	1

X
j2J0

juð jÞjjukð jÞjpk	1 ¼ 0:

Thus, by Corollary 2.1

lim
k!1

jjhpk
	 hn

1jj
pk	1 ¼

j
P

j2Jc
0

uð jÞ sgnðhn
1ð jÞÞjP

j2J0
juð jÞj ¼ gu51:

Therefore, if 05gu5g51 then there exists a k0 2 N; such that

jjhpk
	 hn

1 jj5g1=ðpk	1Þ; for all k > k0:

In particular, jjhpk
	 hn

1 jj=ðpk 	 1Þ is bounded. ]
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Note that in case (b) of Theorem 3.1 we have obtained a exponential rate
of convergence of hp to hn

1: In the next results, we will examine necessary and
sufficient conditions which guarantee this rate.

For J 0DJ; we will denote by jj � jjJ 0 the restriction of jj � jj to the set of
indices in J 0:

Lemma 3.2. If jjhp 	 hn
1 jj=ðp 	 1Þr

is bounded for some r 2 N; then

jjhpjjJ0
=ðp 	 1Þr ! 0 as p ! 1þ: In particular, jjhpjjJ0

=ðp 	 1Þ ! 0 as p ! 1þ:

Proof. Assume that the claim is false. Since jjhp 	 hn
1jj=ðp 	 1Þr is

bounded, we can take a subsequence pk ! 1þ such that uk :¼
ðhpk

	 hn
1Þ=ðpk 	 1Þr ! u 2 V and uð jÞa0 for some j 2 J0: By (2) we

obtain, for k large,X
j2Jc

0

uð jÞjhpk
ð jÞjpk	1 sgnðhn

1ð jÞÞ þ
X
j2J0

juð jÞjjhpk
ð jÞjpk	1 ¼ 0

or equivalentlyX
j2Jc

0

uð jÞjhpk
ð jÞjpk	1 sgnðhn

1ð jÞÞ þ ðpk 	 1Þrðpk	1Þ X
j2J0

juð jÞjjukð jÞjpk	1 ¼ 0:

Letting k ! 1; we haveX
j2Jc

0

uð jÞ sgnðhn

1ð jÞÞ þ
X
j2J0

juð jÞj ¼ 0;

which is a contradiction by Lemmas 2.1 and 2.2. The second assertion
follows from Theorem 3.1. ]

The following result establishes necessary and sufficient conditions in
order to obtain a rate of convergence faster than p 	 1:

Corollary 3.2. limp!1 jjhp 	 hn
1 jj=ðp 	 1Þ ! 0 if and only ifX

j2Jc
0

vð jÞ ln2 jhn

1ð jÞj sgnðhn

1ð jÞÞ ¼ 0 8v 2 V0: ð12Þ

Proof. Assume that there exists a v 2 V0 such that (12) does not hold.
Taking into account that

X
j2Jc

0

vð jÞ hpð jÞ 	 hn
1ð jÞ

jhn
1ð jÞj














4jjhp 	 hn

1 jj
X
j2Jc

0

jvð jÞj=jhn

1ð jÞj;
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we deduce, from Corollary 3.1, that there exists an M > 0 and a
p0 > 1 such that jjhp 	 hn

1 jj > Mðp 	 1Þ; 15p5p0: We thus conclude that
jjhp 	 hn

1 jj=ðp 	 1Þ does not converge to 0 as p ! 1: Conversely, suppose
that (12) holds for all u 2 V0 and that jjhp 	 hn

1jj=ðp 	 1Þ does not converge
to 0 as p ! 1þ: Let u 2 V be the vector defined as in Lemma 3.2. Then
u 2 V0 and uð jÞa0 for some j 2 Jc

0: From Corollary 3.1 we obtain

X
j2Jc

0

uð jÞ2=jhn

1ð jÞj ¼ 0:

A contradiction. ]

Using a similar argument as above and Lemma 3.2 we can establish the
following general result.

Corollary 3.3. Let r 2 N: Then limp!1 jjhp 	 hn
1 jj=ðp 	 1Þr ! 0 if and

only if X
j2Jc

0

vð jÞ lnk jhn

1ð jÞj sgnðhn

1ð jÞÞ ¼ 0; 14k4r þ 1;

for all v 2 V0:

Next, we study necessary and sufficient conditions needed to obtain an
exponential rate of convergence. From Corollaries 2.1 and 3.3 it will be
necessary that for all v 2 V0;

X
j2Jc

0

vð jÞ lnk jhn

1ð jÞj sgnðhn

1ð jÞÞ ¼ 0 for all k 2 N [ f0g: ð13Þ

Henceforth, we use the following notation. Let 05d15d25 � � �5ds be all
the different values of jhn

1ð jÞj on Jc
0: We consider the partition fJlgs

l¼1 of Jc
0

into sets defined by Jl ¼ fj 2 Jc
0 : jhn

1ð jÞj ¼ dlg:
Condition (13) may be replaced by another condition which is easier to

verify.

Lemma 3.3. Let v 2 V: The following conditions are equivalent:

ðiÞ
P

j2Jc
0

vð jÞ lnk jhn
1ð jÞj sgnðhn

1ð jÞÞ ¼ 0 for all k 2 N [ f0g:
ðiiÞ

P
j2Jc

0
vð jÞ lnk jhn

1ð jÞj sgnðhn
1ð jÞÞ ¼ 0; 04k4s 	 1:

ðiiiÞ
P

j2Jl
vð jÞ sgnðhn

1ð jÞÞ ¼ 0; 14l4s:

ðivÞ
P

j2Jc
0

vð jÞjhn
1ð jÞjp	1 sgnðhn

1ð jÞÞ ¼ 0 for all p > 1:
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(v) There exist 15p15p25 � � �5ps such thatX
j2Jc

0

vð jÞjhn

1ð jÞjpk	1 sgnðhn

1ð jÞÞ ¼ 0; 14k4s: ð14Þ

Proof. ðiÞ ) ðiiÞ: It is obvious.

ðiiÞ ) ðiiiÞ: Putting rl ¼ lnðdlÞ; 14l4s; we can write

X
j2Jc

0

vð jÞ lnk jhn

1ð jÞj sgnðhn

1ð jÞÞ ¼
Xs

l¼1

rk
l

X
j2Jl

vð jÞ sgnðhn

1ð jÞÞ ¼ 0:

Replacing k ¼ 0; 1; . . . ; s 	 1; we obtain an s � s nonsingular homogeneous
linear system of unknowns

P
j2Jl

vð jÞ sgnðhn
1ð jÞÞ; 14l4s (observe that the

determinant of the matrix of coefficients is a Vandermonde determinant).
Then we deduce thatX

j2Jl

vð jÞ sgnðhn

1ð jÞÞ ¼ 0; 14j4s:

ðiiiÞ ) ðivÞ: For all p > 1 we have

X
j2Jc

0

vð jÞjhn

1ð jÞjp	1 sgnðhn

1ð jÞÞ ¼
Xs

l¼1

d
p	1
l

X
j2Jl

vð jÞ sgnðhn

1ð jÞÞ ¼ 0:

ðivÞ ) ðvÞ: It is immediate.

ðivÞ ) ðiÞ: It follows immediately by calculating the derivatives with
respect to p of order k ¼ 0; 1; . . . ; of the expressionX

j2Jc
0

vð jÞjhn

1ð jÞjp	1 sgnðhn

1ð jÞÞ ¼ 0

and letting p ! 1þ:

Finally, we prove ðvÞ ) ðiiÞ: We use an argument similar to that in
ðiÞ ) ðiiÞ: Indeed, writingX

j2Jc
0

vð jÞjhn

1ð jÞjpk	1 sgnðhn

1ð jÞÞ

¼
Xs

l¼1

d
pl	1
l

X
j2Jl

vð jÞ sgnðhn

1ð jÞÞ ¼ 0; 14l4s;
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we also obtain an s � s nonsingular homogeneous linear system of equations
(in this case the determinant of the matrix of coefficients is a generalized
Vandermonde determinant). ]

Corollary 3.4. hp ¼ hn
1 for all p > 1 if and only if

X
j2Jl

vð jÞ sgnðhn

1ð jÞÞ ¼ 0; 14l4s

for all v 2 V:

Proof. From (2) we have hp ¼ hn
1 if and only if

X
j2Jc

0

vð jÞjhn

1ð jÞjp	1 sgnðhn

1ð jÞÞ ¼ 0; 8v 2 V:

Applying Lemma 3.3 we conclude the proof. ]

Let B0 be a basis of V0; where we will assume that B0 :¼ | if V0 ¼ f0g:
Let B1 be a set (possibly empty) of linearly independent vectors in V such
that B :¼ B0 [B1 is a basis of V and let V1 ¼ spanðB1Þ: Then we can
write V ¼ V0 �V1:

Theorem 3.2. Suppose that

X
j2Jl

vð jÞ sgnðhn

1ð jÞÞ ¼ 0; 14l4s; ð15Þ

for all v 2 B0: If (15) also holds for all v 2 B1; then hp ¼ hn
1 for all p > 1:

Otherwise, let

g0 :¼ max
jjvjj¼1
v2V1

j
P

j2Jc
0

vð jÞ sgnðhn
1ð jÞÞjP

j2J0
jvð jÞj 51:

Then for all g05g51 there are p0 ¼ p0ðgÞ > 1 and an M > 0 such that

jjhp 	 hn
1 jj5Mg1=ðp	1Þ for all 15p5p0:

Proof. The first assertion is a consequence of Corollary 3.4. Suppose
there exists a *vv 2 B1 such that (15) does not hold. By Corollary 3.4 and
Lemma 3.3, this implies that there exists a p1 > 1 such that hpahn

1 for
15p5p1: Put hp ¼ hn

1 þ w
ð0Þ
p þ w

ð1Þ
p ; with w

ð0Þ
p 2 V0 and w

ð1Þ
p 2 V1: First, we

prove that w
ð1Þ
p a0 for p close to 1: To the contrary, hpð jÞ ¼ 0; all j 2 J0; and
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from (2) we obtain for p close to 1;X
j2Jc

0

*vvð jÞjhpð jÞjp	1 sgnðhn

1ð jÞÞ ¼ 0: ð16Þ

Let r 2 N arbitrary. By (7), we can write,

jhpð jÞjp	1 ¼ jhn

1ð jÞ þ wð0Þ
p ð jÞjp	1 ¼

Xr

k¼0

lnk jhn
1ð jÞj

k!
ðp 	 1Þk

þ ðp 	 1Þwð0Þ
p ð jÞZpð jÞ þ Oðp 	 1Þrþ1; ð17Þ

where limp!1þ Zpð jÞ ¼ 1=jhn
1ð jÞj: From the hypothesis and Corollary 3.3,

we have limp!1þ jjwð0Þ
p jj=ðp 	 1Þk ¼ limp!1þ jjhp 	 hn

1 jj=ðp 	 1Þk ¼ 0; for all

k 2 N: So replacing (17) in (16), dividing by ðp 	 1Þk; 04k4r and taking
limits as p ! 1 we conclude thatX

j2Jc
0

*vvð jÞ lnkjhn

1ð jÞj sgnðhn

1ð jÞÞ ¼ 0; 04k4r:

Since the above equality holds for all r 2 N; Lemma 3.3 implies that *vv

satisfies (15). This is a contradiction. We therefore conclude that w
ð1Þ
p a0 for

p close to 1: Taking a subsequence, if necessary, we consider the unit vector

w 2 V1 given by w ¼ limp!1þ w
ð1Þ
p =jjwð1Þ

p jj: Applying (2) we have, for p close

to 1;X
j2Jc

0

wð jÞjhpð jÞjp	1 sgnðhn

1ð jÞÞ þ
X
j2 #JJ0

wð jÞjhpð jÞjp	1 sgnðhpð jÞÞ ¼ 0;

where #JJ0 :¼ fj 2 J0 : wð jÞa0ga|: Since, hpð jÞ ¼ w
ð1Þ
p ð jÞ if j 2 #JJ0; we can

rewrite the above equation as

X
j2Jc

0

wð jÞjhpð jÞjp	1 sgnðhn

1ð jÞÞ þ jjwð1Þ
p jjp	1

X
j2 #JJ0

jwð jÞj w
ð1Þ
p ð jÞ

jjwð1Þ
p jj













p	1

¼ 0:

So

lim
p!1þ

jjwð1Þ
p jjp	1 ¼

j
P

j2Jc
0

wð jÞ sgnðhn
1ð jÞÞjP

j2J0
jwð jÞj ¼ gw4g051;

and hence for gw5g51 there exists a p2 ¼ p2ðgÞ > 1 such that jjwð1Þ
p jj5

g1=ðp	1Þ for 15p5p2: If B0 ¼ | or w
ð0Þ
p ¼ 0 all p > 1; then the proof is

complete. Otherwise, using a subsequence if necessary, we define the unit
vector *uu 2 V given by *uu ¼ limp!1þ w

ð0Þ
p =jjwð0Þ

p jj: By (2) we have for p
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close to 1 X
j2Jc

0

*uuð jÞ jhpð jÞjp	1 sgnðhn

1ð jÞÞ ¼ 0:

By (6) we can write

jhpð jÞjp	1 ¼ jhn

1ð jÞ þ wð0Þ
p ð jÞ þ wð1Þ

p ð jÞjp	1

¼ jhn

1ð jÞjp	1 þ ðp 	 1Þðwð0Þ
p ð jÞ þ wð1Þ

p ð jÞÞZpð jÞ;

where limp!1þ Zpð jÞ ¼ 1=hn
1ð jÞ: Placing this in the previous equation we

obtain X
j2Jc

0

*uuð jÞjhn

1ð jÞjp	1 sgnðhn

1ð jÞÞ

þ ðp 	 1Þ
X
j2Jc

0

*uuð jÞðwð0Þ
p ð jÞ þ wð1Þ

p ð jÞÞjZpð jÞj ¼ 0:

From the hypothesis and Lemma 3.3, we haveX
j2Jc

0

*uuð jÞjhn

1ð jÞjp	1 sgnðhn

1ð jÞÞ ¼ 0

and so

jjwð0Þ
p jj

X
j2Jc

0

*uuð jÞ w
ð0Þ
p ð jÞ

jjwð0Þ
p jj

jZpð jÞj þ
X
j2Jc

0

*uuð jÞ wð1Þ
p ð jÞ jZpð jÞj ¼ 0:

It is now easy to deduce that there exists an M > 0 and 15p04p2 such that
jjwð0Þ

p jj4Mg1=ðp	1Þ for 15p5p0: This conclude the proof. ]

Observe that if hn
1 is the unique best ‘1-approximation of 0 from K ; then

Corollary 2.2 implies that B0 ¼ | and so (15) holds obviously.

Corollary 3.5. If L is a singleton then there exists a g; 05g51; such

that jjhp 	 hn
1 jj5g1=ðp	1Þ:

The following table summarizes the previous results and gives a complete
description of the rate of convergence of hp to hn

1 as p ! 1þ: Given v 2 V we
denote, for short,

Sk
Jc

0
ðvÞ ¼

X
j2Jc

0

vð jÞ lnk jhn

1ð jÞj sgnðhn

1ð jÞÞ; SJl
ðvÞ ¼

X
j2Jl

vð jÞ sgnðhn

1ð jÞÞ
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and we consider

r0 ¼ max r 2 f1; . . . ; s 	 1g : Sk
Jc

0
ðvÞ ¼ 0; 04k4r; 8v 2 B0

n o
:

Condition on V Rate

SJl
ðvÞ ¼ 0; 14l4s; 8v 2 B0 [B1 hp ¼ hn

1; for all p > 1

SJl
ðvÞ ¼ 0; 14l4s; 8v 2 B0 Oðg1=ðp	1ÞÞ

SJl
ðvÞa0; for some 14l4s and some v 2 B1

r05s 	 1 Oððp 	 1Þr0Þ

Note that, from Corollary 2.1, r051: On the other hand, from Lemma
3.3, r0 ¼ s 	 1 is equivalent to SJl

ðvÞ ¼ 0; 14l4s; for all v 2 B0:
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