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In this paper, we consider the problem of best approximation in £,(n), 1 <p <oco. If
hp, 1 <p<oo, denotes the best £,-approximation of the element s € R" from a proper
affine subspace K of R", h¢ K, then lim,_;h, =hf, where hf is a best
£y-approximation of /4 from K, the so-called natural ¢;-approximation. Our aim is
to give a complete description of the rate of convergence of &, to /i as p — 1. © 2002
Elsevier Science (USA)
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1. INTRODUCTION

For x = (x(1),x(2),...,x(n)) € R", the £,-norms, 1 <p < oo, are defined by

. 1/p
Ixll, = D0 xDF ) 1<p<os,
Jj=1

il = max, [x()]

For convenience we will use || - || as the norm || - ||

"This work was partially supported by Junta de Andalucia, Research Groups 0178, 0268 and by
Ministerio de Ciencia y Tecnologia, Project BFM2000-0911.
2To whom all correspondence should be addressed.

316

0021-9045/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.



LINEAR DISCRETE POLYA 1-ALGORITHM 317

Let K#0 be a subset of R”. For 1 € R"\K and 1<p<oo we say that
h, € K is a best £,-approximation of / from K if

1y — A, <[|f = 4l], for all /' € K.

If K is a closed set of R", then the existence of /, is guaranteed. Moreover,
there exists a unique best ¢,-approximation if K is a closed convex set and
l<p<oo. In general, the unicity of the best ¢j-approximation is not
guaranteed. Throughout this paper, K denotes a proper affine subspace of
R" and we will assume, without loss of generality, that 4 =0 and 0 ¢ K. In
this context, we gave in [5] a complete description of the rate of convergence
of the Polya algorithm as p — oo. We will apply similar techniques to study
the case p — 1.

It is known, [2, 3], that if K is an affine subspace of R", then lim,_,; /1, =
IY, where I is a best ¢j-approximation of 0 from K called the natural best
{1-approximation. In the literature, the above convergence is called the
Pélya 1-algorithm. The natural ¢;-approximation satisfies the following
property. If L denotes the set of the best ¢;-approximations of 0 from K then
¥ is the unique element of L that minimizes the expression

n

> I ()il (),

Jj=1

for all #; € L, where 01n 0 := 0.

In [1] it is proved that ||, — h7||/(p — 1) is bounded as p — 1. Also in
[1], the authors show that if L is a singleton then ||k, — h¥|| = O(y"/®~V) for
some 0<y<1. However, the next example shows that this condition is not
necessary to guarantee an exponential rate of convergence.

ExaMPLE 1.1. Let us consider the affine subspace
K =(0,1,1) + span{(0,1,—1),(2,1,0)}.

If h € K, then we can write 7= 2u,1 4+ A+ p,1 — 1), for some 4, u € R.
Since, for all u € R\ {0},

Al = 2u) + [T+ A4+ p+[1 =4 > [T+ + |1 —4|=2,
we conclude that the set of best /;-approximations of 0 from K is given by
L={0,14+41-2):|2<1}.

Moreover, the function ®(1) = (1 + A) In(1 + 1) + (1 — A) In(1 — 2), with 4
€ [—1,1], has a minimum at A = 0 and therefore 4} = (0, 1, 1). On the other
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hand, an easy computation shows that for p > 1,

4 1 1
hy = (1 e T T am e T 2<zp1>/<p1>>’

and we immediately deduce that lim, .+ 2"/®=V ||k, — h¥|| =1, and so,

Iy = il = o (")

Our aim is to give a complete description of the rate of convergence of
||h, — K| as p — 1*. More precisely, we establish necessary and sufficient
condltlons on K which guarantee that ||, — Af||/(p — )= 0asp— 1T,
for some k € N, and conditions on K for h, = A} for all p > 1, and also
conditions for when we obtain an exponential rate of convergence.

2. NOTATION AND PRELIMINARY RESULTS

Let J ={1,2,...,n}. For x € R", we define Z(x) = {j € J:x(j) =0}
and R(x) == J\Z(x). Let L be the set of best £;-approximations of 0 from K
and let A be the natural best ¢,-approximation. We write K = A+ 7,
where ¥ is a proper linear subspace of R". For v € ¥7, v#£0, we consider the
function of the real variable A € [0, +00) defined by

=G + 2o I k() + ().

jeJ

Observe that ¢, is a convex function if 0 <Z<minjerg)nrew) 147 (/)]/[0(J)]-
Moreover, if Z(h¥)<=Z(v), then

¢,(07) = > v(j)(1 +In|Af(j)]) sen(Aif (1), (1)

R(hY)
otherwise ¢/ (07) = —oo.
LEMMA 2.1. If'hy € L, then Z(hT)=Z(hy).

Proof. Suppose that there exists an &; € L such that /() #0 for some
J € Z(h¥). If we take the vector v = h; — hF#0, then ¢ (0") = —oo and so
the function ¢, is strictly decreasing in [0, 4o] for some 4o > 0 sufficiently

small. Then h; = ¥ + Agv = (1 — Ao)h¥ + Aohy is in L and contradicts the
definition of /. 1

The following result is known (see for instance [4, 6]).
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TueoreM 2.1 (Characterization of Best £,-Approximation). h,, 1<p<
00, is a best y-approximation of 0 from K if and only if for all v € v~

> D) senlhy()) =0 if 1<p<oo (2)

=

or

<> ()l =1 (3)

Z(h)

> v(j)sen(h

R(hy)

To simplify the notation, we henceforth set Jy = Z(h¥) and J§ = R(h}).
Let v € ¥, v#0. For 4 > 0 sufficiently small, we have

1§+ dolly = > () + A v()))]
jeJ
= > (K () + w(j)) sen(Hi () + 2 |o(j
Jed; J€Jo
=S+ 2SS o) sen(hF () + > vl
/EJO _/GJC Jjedo
=111+ 2D v() sen(BFG) + D Jo()
JeJ; Jj€Jo

From the above equality we immediately obtain the following result.

LEMMA 22. Let ve ¥, v#0. Then h = It 4 Av, with 1> 0 sufficiently
small, is a best ¢1-approximation of 0 from K if and only if

Z v(j) sgn(h(j +Z|

jEJC Jj€Jo

COROLLARY 2.1. Letve v, v#0. If Jy=Z(v) then
(a) Zjng v(j) sgn(hy(j)) =0,
(b) h*+ iv € L, for A sufficiently small,
© 2jese v()) In[A())] sen(hi(j)) = 0, otherwise,

<> o)) (4)

Jj€Jo

Z v(j) sen (/i ()

jeds
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Proof. 1f Jy=Z(v), then conditions (a) and (b) follow immediately from
(3) and Lemma 2.2. Now from (a) and (1) we have

¢,(07) =Y v(/)Inlf(j)] sen (ki (/). (5)

el

Since A 4 v € L for A sufficiently small, the definition of 4} implies that
¢(07)>0. Replacing v by —v in (5) we conclude (c). On the other hand, if
Jo ¢ Z(v), then the strict inequality in (4) follows from (3) and Lemmas 2.1
and 2.2. 1

COROLLARY 2.2 (Pinkus [4, p. 135]). A} is the unique best {,-approxima-
tion of 0 from K if and only if (4) holds for all v € V", v#0.

3. RATE OF CONVERGENCE

Let f#0 and {o,} be a sequence of real numbers such that o, — 0 as
p — 17. Applying the Mean Value Theorem to the function f(7) = | + ¢[/~"
it may be shown that

B+ ol ™ = 1B+ (p = 1) (6)

where lim,, .+ n, = l/ﬁ. Now, applying Taylor’s formula of order r to the
function g(p) = |B|’~" at p = 1, we can write

_ " 1k |B .
™ =3 T o= 1+ o= D, 0= 1
Let 77y be the linear subspace of 7~ defined by ¥ :={ue ¥ :u(j) =
0, Vj € Jo}. Note that if Jy = @, then ¥ = ¥".

LEMMA 3.1.  Suppose that there exists a v € V"o and r € N such that

> () In* |5 () sen(hf(j)) =0,  0<k<r. (8)
JETS
Then
S () =)
i ooy 2 V)
= - (r+11>' > o(j) I ()] sen(hE().- 9)

L jedg
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Proof. Letve ¥y From (2) we have, for p close to 1,

> o)) sen(hE(j)) = 0. (10)

el

Since ||k, — h¥|| — 0asp — 17, applying (7) with r replaced by r + 1, we get
for every j € J§

()™ = 113 () + () = HE (P

r+1 In k|h*

—Z (P =1+ =) (j) =BG, + O((p = 1)),

where lim, 1+ 17,(j) = 1/h{(j). Placing this expression in (10) and taking
into account (8) we obtain

r+1
e 2 e D seni)
o= 1) Y w)() RGN (] + 0~ 17 =0,

Jels
Now, dividing by (p — 1)’+1 and letting p — 17 we obtain (9). 1

Observe that, from Corollary 2.1, (8) holds for all v € ¥y and r = 1. So
we can establish the following result.

COROLLARY 3.1. Forallve v,

Jim > —7F%@=%meﬂmm@ﬁm»

jeJt JjeJs
Now, we can give a very easy proof of the main result in [1].

THeOREM 3.1 (Egger and Taylor [1, Theorem 2]).  There exists a constant
M > 0 such that ||h, — hf||<M(p —1) for all p > 1.

Proof. If the assertion is false, then there exists a sequence {py };n such
that py | 1 and ||h,, — K¥]|/(pk — 1) — oo as k — oo. Thus, we will prove the
theorem by showing that for any sequence pi | 1, liminf||h, — A¥||/
(pk —1)<o0. So let pi | 1. If h,, = K for infinite many k, then the result
follows. Using a subsequence if necessary, we may therefore suppose that
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hy, # I for all k and limg_.o ux =u € 7, with |[u|| = 1, where

hy, — I

ukzi
Ve = 111

We consider two cases.
(a) If u € ¥, then, from Corollary 3.1, we have

S ) D) 55 ) 0 ) s )
/Hoc pi—1 jeit La®)] 2 Jex
hence
. il 2 :
lim =— J) In* |1 ()| sgn(ht
prrﬁ ;;W 22; 115 ()] sen(kE (7))
and
Ly = Bl e ) In? [ ()| sgn (A ()]
koo 1 2 s ()13 ()]

In particular, we have obtained that ||/, — hT||/(px — 1) is bounded.
(b) If u(j)#0 for some j € Jy, then, applying (2), we have, for k large,

Y ulDlhy (NP sen(hf () + Y u(i)y, ()P =0, (11)

]GJS Jj€Jo
and so,

> ulDh (DI sgnlif () + [y, = B )l

eI y=

P/c =0

Thus, by Corollary 2.1

| 2 jese u(J) sen(hy()))]
Zje]t, u( /)]

Therefore, if 0 <y, <y <1 then there exists a kg € N, such that

lim ||y, — i = =<l

||hpk_hT||<Vl/(pk_l), for all k > k.

In particular, ||A, — /¥||/(px — 1) is bounded. 1



LINEAR DISCRETE POLYA 1-ALGORITHM 323

Note that in case (b) of Theorem 3.1 we have obtained a exponential rate
of convergence of /1, to /if. In the next results, we will examine necessary and
sufficient conditions which guarantee this rate.

For J'=J, we will denote by || - ||, the restriction of || - || to the set of
indices in J'.

LemMmA 3.2, If ||h, — Ki||/(p — 1) is bounded for some r €N, then
Al /(p = 1) — 0 as p — 1F. In particular, |||, /(p —1) = 0asp — 1*.

Proof. Assume that the claim is false. Since ||h, —h¥||/(p—1)" is
bounded, we can take a subsequence p;p — 1T such that u =
(hy, —h%)/(pk —=1)" —ue v and u(j)#0 for some je Jyo. By (2) we
obtain, for k large,

S u(i) iy ()P sgn(iE) + S (), ()P =

VEU J€Jo
or equivalently

S wDlp ()P senlit () + (o= 1/ S ) lu(HP =0

Jedy Jj€Jo

Letting k£ — oo, we have

> u(j)sen(kf(j) + > [u())

jGJL j€Jo

which is a contradiction by Lemmas 2.1 and 2.2. The second assertion
follows from Theorem 3.1. 1§

The following result establishes necessary and sufficient conditions in
order to obtain a rate of convergence faster than p — 1.

COROLLARY 3.2. lim,_; ||k, — iF||/(p — 1) — O if and only if

Y v ? A () sen(hi(j) =0 Ve 1. (12)

€l

Proof. Assume that there exists a v € ¥"y such that (12) does not hold.
Taking into account that

S o) PP i, a5 o1

je‘]‘f’ |hT(])| jEJC
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we deduce, from Corollary 3.1, that there exists an M >0 and a
po > 1 such that ||h, — h¥|| > M(p — 1), 1<p<po. We thus conclude that
||h, — K¥]|/(p — 1) does not converge to 0 as p — 1. Conversely, suppose
that (12) holds for all u € 77 and that ||, — Af||/(p — 1) does not converge
to 0 as p— 1. Let u € ¥~ be the vector defined as in Lemma 3.2. Then
u € 7 and u(j)#0 for some j € J§. From Corollary 3.1 we obtain

> uli) /() = 0.

JeJ;
A contradiction. 1

Using a similar argument as above and Lemma 3.2 we can establish the
following general result.

CoROLLARY 3.3.  Let r € N. Then lim,_., ||h, — If||/(p — 1) — 0 if and
only if
> w(j) It () sen(kt () =0,  1<k<r+]1

=
forallve .

Next, we study necessary and sufficient conditions needed to obtain an
exponential rate of convergence. From Corollaries 2.1 and 3.3 it will be
necessary that for all v € 77,

> v(i) I G) sgn(hf(j)) =0 for all ke NU{0}.  (13)

Jes

Henceforth, we use the following notation. Let 0<d; <d) < --- <d; be all
the different values of |A¥(/)| on J§. We consider the partition {J;})_, of J§
into sets defined by J; = {j € J§ : |h}(j)| = di}.

Condition (13) may be replaced by another condition which is easier to
verify.

LemMA 3.3. Let v € v". The following conditions are equivalent:
(1) Sjese v(/) I ()] sgn(it(/)) =0 for all k € NU{0}.
(i) e v() I [HF () sen(hi(j) =0,  O<k<s—1.
(iii) >y, v(/)sgn(Ai())) =0,  I<I<s.

(iV) jese oD sen(hiz(j)) = O for all p > 1.
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(v) There exist 1 <p;<py,< --- <py such that

Yo vDIE ) sen(h () =0, 1<k<s. (14)

e

Proof. (i) = (ii): It is obvious.
(i) = (iil): Putting p;, = In(d;), 1 <I<s, we can write

> o(j) In* [5F(j)] sgn(h Z P Y () sen(ki(j)) = 0.
Jelg =
Replacing £ =0,1,...,s — 1, we obtain an s X s nonsingular homogeneous

linear system of unknowns >, v(j)sgn(hi(/j)), | </<s (observe that the
determinant of the matrix of coeflicients is a Vandermonde determinant).
Then we deduce that

S () sen(i(j)) =0, 1<j<s.

JEJI

(iii) = (iv): For all p > 1 we have

> oDIE I sen(ki() Z di™" Y o(j) sen(hi(j) = 0.

JjeJg =

(iv) = (v): It is immediate.
(iv) = (i): It follows immediately by calculating the derivatives with

respect to p of order k =0, 1,..., of the expression
> oDIEFHP sen(kF()) =0
jeJg

and letting p — 17,

Finally, we prove (v) = (ii). We use an argument similar to that in
(i) = (ii). Indeed, writing

> oG sen(ki ()

Jjels

= S @S () sen(if() =0, 1<I<s,

=1 =
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we also obtain an s x s nonsingular homogeneous linear system of equations
(in this case the determinant of the matrix of coefficients is a generalized
Vandermonde determinant). 1

COROLLARY 3.4.  h, = I for all p > 1 if and only if

> o(j)sen(hf(j)) =0,  1<I<s

=
forallvev.

Proof. From (2) we have h, = A} if and only if

S o) sen(ki(j) =0,  Voev

jeds
Applying Lemma 3.3 we conclude the proof. 1

Let %, be a basis of ¥, where we will assume that %, == @ if ¥y = {0}.
Let 24, be a set (possibly empty) of linearly independent vectors in ¥~ such
that # = %y U %, is a basis of ¥~ and let ¥"; = span(%;). Then we can
write ¥ =YD V1.

THEOREM 3.2. Suppose that

> w(j) sen(hf(j)) =0, 1<I<s, (15)

JEJ

Sor all v e %. If (15) also holds for all v € %, then h, = ¥ for all p > 1.
Otherwise, let

B |ZJGJ‘ v(j) sgn(Af (/)|
o > e, ()]

vEY|

<1.

Then for all yoy<y<1 there are py=po(y) > 1 and an M >0 such that
||y — K[| < MY P~ for all 1<p<py.

Proof. The first assertion is a consequence of Corollary 3.4. Suppose
there exists a € #; such that (15) does not hold. By Corollary 3.4 and
Lemma 3.3, this implies that there ex1sts a p1>1 such that h,#hT for
l<p<pi. Puth, = h¥+ w,,) + wﬁ, , with w )€ vy and w], €. Flrst we
prove that wpl #0 forp close to 1. To the contrary, /,(j) =0, all j € Jo, and
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from (2) we obtain for p close to 1,

> WA () sen(hE())) = 0. (16)

eI

Let r € N arbitrary. By (7), we can write,

r nk By
(P~ = ) + ! = 30 I, g

k=0
+ (= D (i, () + Op = 1), (17)

where lim, i+ 17,(j )7 1/|h%(j)]. From the hypothesis and Corollary 3.3,
we have hm,,_,1+||wp 1/ (p—1"= lim,_;+ ||, — A¥]|/(p — 1)* =0, for all
k € N. So replacing (17) in (16), dividing by (p — l)k, 0<k<r and taking
limits as p — 1 we conclude that

3 o() nh |kt () sen(E () =0,  O<k<r.

el

Since the above equality holds for all » € N, Lemma 3.3 1mp11es that ¢
satisfies (15). This is a contradiction. We therefore conclude that w,(, #0 for
p close to 1. Taking a subsequence, if necessary, we consider the unit vector
w e ¥ given by w = lim,_;+ wl(,l)/||w](,1>||. Applying (2) we have, for p close
to 1,

> Dl (DP™" sen(fif () + PIRLWIAG] Fsgn(hy(j) =0,

Jels jelo

where Jo = {j € Jo: w(j)#0}#0. Since, /,(j) = wﬁ,l)(j) if j € Jy, we can
rewrite the above equation as

W
i NP~ w
S vl (AP sen(E) + D0P S ]
JeT =
So
| Sjes W) sen (i ())]
im ! = - E—
et ZieJo|W 1
and hence for 7, <y<1 there exists a €2 ) > 1 such that ||wp | <

Y0=1 for 1<p<p,. If By=0 or W 0 all p > 1, then the proof is
complete. Otherwise, using a subsequence if necessary, we define the unit
vector & € ¥ given by i = lim,_+ w,, /||wp [|. By (2) we have for p
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close to 1

S a()) [y ()P sen(i()) = 0.

=
By (6) we can write
[y (D" = 1)+ wi () + wid ()P
=EE NI+ (0 = DO )+ w (D)),

where lim, 1+ n,(j) = 1/#(j). Placing this in the previous equation we
obtain

> a(DIEFG)I sen(if ()

el

+ (= 1) Y a(Hw) () +w (D)l ()] =0,

Jjeds
From the hypothesis and Lemma 3.3, we have

> a( )P sen(hf (7)) =0

el

and so

w1 (D) 4D a0 wy () In, ()] = 0.

jeds | jeds

Iti 1s now easy to deduce that there exists an M > 0 and 1 <py <p, such that
|Iw|| < My'/®=1) for 1<p<py. This conclude the proof. B

Observe that if 4F is the unique best ¢;-approximation of 0 from K, then
Corollary 2.2 implies that %, = @ and so (15) holds obviously.

COROLLARY 3.5. If L is a singleton then there exists a y, 0<y<1, such
that ||, — k|| <y!/=D.

The following table summarizes the previous results and gives a complete
description of the rate of convergence of /, to i asp — 1*. Givenv € ¥~ we
denote, for short,

Zhe() =Y o)W B ) senhf()),  Zy(v) =) o(j) senlhii())

jeJs jel
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and we consider

¥o :max{re {1,...,s=1}: Zkg(v) =0, 0<k<r, Wwe ﬂo}.

Condition on ¥~ Rate
2;,0) =0, I1<I<s, Yo € By U B hy, = h¥, for all p > 1
2,0)=0, 1<I<s, VYoe % O(y" =)

2, (v)#0, for some 1</<s and some v € %,

ro<s—1 O((p—1)")

Note that, from Corollary 2.1, ro>1. On the other hand, from Lemma
3.3, rp = s — 1 is equivalent to X;,(v) = 0, 1 <I<s, for all v € .
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